AN EXTENSION OF THE KAHANE-KHINCHINE INEQUALITY IN A BANACH SPACE

BY

DAVID C. ULLRICH Department of Mathematics, Oklahoma State University, Stillwater, OK 74078-0613, USA

ABSTRACT

We show that the geometric mean of the norm of a linear combination of the Steinhaus variables with "coefficients" in a Banach space is equivalent to the variance of the norm. This extends a result of Kahane, who established the corresponding inequality for the L^p means.

0. Introduction

Let $\omega_1, \omega_2, \ldots$ denote the *Steinhaus variables*: independent identically distributed random variables, uniformly distributed on [0, 1]. A classical version of Khinchine's inequality states that for any p > 0 there exist $c_p, C_p > 0$ such that for any $x_1, \ldots, x_N \in \mathbb{C}$ we have

(1)

$$C_{p}\left\{\mathscr{E}\left|\sum_{j=1}^{N}e^{2\pi i\omega_{j}}x_{j}\right|^{p}\right\}^{1/p} \geq \left\{\mathscr{E}\left|\sum_{j=1}^{N}e^{2\pi i\omega_{j}}x_{j}\right|^{2}\right\}^{1/2}$$

$$\geq c_{p}\left\{\mathscr{E}\left|\sum_{j=1}^{N}e^{2\pi i\omega_{j}}x_{j}\right|^{p}\right\}^{1/p}.$$

(Here and below "&" denotes "expected value".)

This inequality was considerably generalized by Kahane, who showed that if B is a Banach space and $x_1, \ldots, x_N \in B$ then

Received August 4, 1987

(2)

$$C_{p}\left\{\mathscr{E}\left\|\sum_{j=1}^{N}e^{2\pi i\omega_{j}}x_{j}\right\|^{p}\right\}^{1/p} \geq \left\{\mathscr{E}\left\|\sum_{j=1}^{N}e^{2\pi i\omega_{j}}x_{j}\right\|^{2}\right\}^{1/2}$$

$$\geq c_{p}\left\{\mathscr{E}\left\|\sum_{j=1}^{N}e^{2\pi i\omega_{j}}x_{j}\right\|^{p}\right\}^{1/p}.$$

(See Theorem 4 in Chapter 2 of [KH] or Exercise 1 on page 176 of [AG] for the original proof; a different argument due to C. Borell appears in Section 1.e of [LT], Volume II.) (Note that the middle term in (2) is *not* equivalent to $\{\sum_{j=1}^{N} || x_j ||^2\}^{1/2}$ unless B is isomorphic to a Hilbert space; see [KW].)

It was shown in [UK] that (1) extends to the case p = 0:

(3)
$$\exp\left\{\mathscr{E}\log\left|\sum_{j=1}^{N}e^{2\pi i\omega_{j}}x_{j}\right|\right\} \geq c\left\{\mathscr{E}\left|\sum_{j=1}^{N}e^{2\pi i\omega_{j}}x_{j}\right|^{2}\right\}^{1/2} \quad (x_{1},\ldots,x_{n}\in\mathbb{C}).$$

We should perhaps point out that the corresponding inequality with Rademacher functions in place of the Steinhaus variables is false, so that (3) cannot quite follow from the central limit theorem *per se*. On the other hand, (3) would be trivial if the Steinhaus variables were replaced by Gaussian variables, but the Gaussian version of (3) does not suffice for the applications given in [UK].

The purpose of the present paper is to prove a Banach-space version of (3) (Theorem 1 below).

The proof of (2) in [UK] is by the so-called "method of characteristic functions", also known as the Fourier transform. Having attempted to demonstrate the contrary, we must agree with the authors of [AG] that such methods seem to be of little use in proving results such as this in the infinite-dimensional case. However, it turns out that Kahane's proof of (2) can be adapted to the present case. The main step in the proof of (2) given in [KH] is a lemma stating roughly that if $\lambda > 0$ is such that our sum probably has norm not exceeding λ , then it is extremely unlikely that the norm exceeds 2λ ([KH], Theorem 3 (Chapter 2)). We prove a sort of "concentration inequality" in the other direction: There exist $\alpha > 0$ and $\gamma < 1$ such that, under suitable hypotheses, the probability that the norm of our sum is less than $\alpha\lambda$ does not exceed γ times the probability that the norm is less than λ . See Lemmas 1 and 2 below.

We wish to thank A. Pelczyński for suggesting the question.

NOTE. Recall that a Banach space is said to have cotype 2 if

(4)
$$\sum_{j=1}^{N} ||x_{j}||^{2} \leq c \mathscr{E} \left\| \sum_{j=1}^{N} e^{2\pi i \omega_{j}} x_{j} \right\|^{2}.$$

(This is equivalent to the usual definition in terms of Rademacher functions; see the Appendix to [AG].) Thus our theorem has as a corollary

(5)
$$\exp \mathscr{E} \log \left\| \sum_{j=1}^{N} e^{2\pi i \omega_j} x_j \right\| \ge c \left\{ \sum_{j=1}^{N} \| x_j \|^2 \right\}^{1/2},$$

if B has cotype 2. Now, if B is a Banach lattice of cotype 2, then it is relatively easy to establish (5) using the Krivine functional calculus and the onedimensional result in [UK]. (See [LT], Volume II, p. 42.) One might think that a proof of (5) in a lattice of cotype 2 "must" conceal a proof of Theorem 1 below in an arbitrary lattice. (How can $A \leq B$ imply $A \leq C$ unless $B \leq C$?) But we have been unable to prove Theorem 1 in a lattice from the Krivine calculus. (Note that a proof of Theorem 1 in an arbitrary Banach lattice would give Theorem 1 in an arbitrary Banach space, since any Banach space is isometric to a subspace of some C(K).)

NOTE. Our theorem immediately implies an apparently stronger statement concerning two (or finitely many, by induction) mutually independent sequences of Steinhaus variables; see the corollary in Section 3. This is one reason we wished to extend the one-dimensional inequality in [UK] to a vector-valued context: If one takes B = C in the corollary one obtains an extension of the inequality in [UK] the statement of which mentions nothing but scalars, but the proof of which appears to require our vector-valued inequality.

1. Theorem

We intend to state and prove our theorem *assuming* the validity of the lemmas to be presented in the next section.

THEOREM. There exists c > 0 such that if x_1, \ldots, x_N are elements of the Banach space B then

(6)
$$\exp \mathscr{E} \log \left\| \sum_{j=1}^{N} e^{2\pi i \omega_j} x_j \right\| \geq c \left\{ \mathscr{E} \left\| \sum_{j=1}^{N} e^{2\pi i \omega_j} x_j \right\|^2 \right\}^{1/2}.$$

PROOF. Let $x_1, \ldots, x_N \in B$, and let μ be the distribution (or the "law") of $\sum_{j=1}^{N} e^{2\pi i \omega_j} x_j$, so that

$$\mu(A) = P\left\{\sum_{j=1}^{N} e^{2\pi i \omega_j} x_j \in A\right\}.$$

Let $B_{\lambda} = \{x \in B : ||x|| < \lambda\}$. As in [UK], we need only show that

(7)
$$\int_0^1 \mu(B_\lambda) \lambda^{-1} d\lambda \leq c$$

under the assumption (which we now assume) that $\mathscr{E} \parallel \sum_{j=1}^{N} e^{2\pi i \omega_j} x_j \parallel^2 = 1$. Suppose $\parallel x_1 \parallel \ge \parallel x_j \parallel$ for all *j*. The piece of the integral in (7) corresponding to $\lambda < \frac{1}{2} \parallel x_1 \parallel$ can be handled by the same simple argument as in [UK]: If $\lambda < \frac{1}{2} \parallel x_1 \parallel$ then for any $y \in B$ whatsoever the triangle inequality shows that

$$P\{ || e^{2\pi i \omega_1} x_1 - y || < \lambda \} \leq c \lambda / || x_1 ||,$$

so that independence gives

$$P\left\{\left\|\sum_{j=1}^{N}e^{2\pi i\omega_{j}}x_{j}\right\|<\lambda\right\}\leq c\lambda/\|x_{1}\|\qquad (\lambda<\frac{1}{2}\|x_{1}\|).$$

Thus

$$\int_0^{\|x_1\|/2} \mu(B_{\lambda}) \lambda^{-1} d\lambda \leq c.$$

Let K, δ , and y be as in Lemmas 1 and 2. The above inequality shows that

(8)
$$\int_0^{2K ||x_1||} \mu(B_{\lambda}) \lambda^{-1} d\lambda \leq c.$$

Next we will show that

(9)
$$\mu(B_{\alpha\lambda}) \leq \gamma \mu(B_{\lambda}) \qquad (2K \parallel x_1 \parallel \leq \lambda \leq 1),$$

where $\alpha = \delta/2K$. Fix $\lambda \in [2K \parallel x_1 \parallel, 1]$, and now pick an integer M which is *maximal* subject to the condition

(10)
$$\left\{\mathscr{E}\left\|\sum_{j=1}^{M}e^{2\pi i\omega_{j}}x_{j}\right\|^{2}\right\}^{1/2} \leq \lambda/K.$$

(We may certainly suppose K > 1, so that $\lambda/K < 1$, which implies that (10) fails if M is large enough, since $\mathscr{E} \parallel \sum_{j=1}^{N} e^{2\pi i \omega_j} x_j \parallel^2 = 1$.)

Let $X = \sum_{j=1}^{M} e^{2\pi i \omega_j} x_j$ and $Y = \sum_{j=M+1}^{N} e^{2\pi i \omega_j} x_j$; let $\sigma^2 = \mathscr{E} \parallel X \parallel^2$. Then (10) states precisely that $K\sigma \leq \lambda$. On the other hand, the triangle inequality and the maximality of M show that $\sigma + \parallel x_{M+1} \parallel > \lambda/K$; since $\parallel x_1 \parallel \geq \parallel x_{M+1} \parallel$ and $\lambda \geq 2K \parallel x_1 \parallel$ this shows that that $\alpha \lambda = \delta \lambda/2K < \delta \sigma$. Now Lemma 2 gives (9):

$$P\{ ||X + Y|| < \alpha\lambda \} \leq P\{ ||X + Y|| < \delta\sigma \}$$
$$\leq \gamma P\{ ||X + Y|| < K\sigma \}$$
$$\leq \gamma P\{ ||X + Y|| < \lambda \}.$$

(In other words: Although the distribution of our sum is presumably not infinitely divisible, it is pretty darn divisible — enough so to derive (9) from Lemma 2.)

Now we can conclude the proof:

Let $I_n = [\alpha^{n+1}, \alpha^n]$. Pick n_0 so $2K \parallel x_1 \parallel \in I_{n_0}$. Repeated use of (9) shows that $\mu(B_{\lambda}) \leq \gamma^n$ for $\lambda \in I_n$, $n = 0, 1, ..., n_0$. Thus

(11)
$$\int_{\alpha^{(n_0+1)}}^{1} \mu(B_{\lambda}) \lambda^{-1} d\lambda \leq \sum_{n=0}^{n_0} \gamma^n \log \frac{1}{\alpha} \leq c.$$

Since $2K ||x_1|| \ge \alpha^{(n_0+1)}$, (8) and (11) give (7). QED, assuming Lemma 2.

2. Lemmas

In this section we shall state and prove Lemma 1, leaving it to the reader to deduce Lemma 2.

LEMMA 1. There exist constants $\delta > 0$, $K < \infty$, and $\gamma \in (0, 1)$ such that if $x_1, \ldots, x_N \in B$, $X = \sum_{i=1}^N e^{2\pi i \omega_i} x_i$, and $\mathscr{E} \parallel X \parallel^2 = 1$, then

(12)
$$P\{ || X - y || < \delta \} \leq \gamma P\{ || X - y || < K \}$$

for any $y \in B$.

LEMMA 2. There exist constants $\delta > 0$, $K < \infty$, and $\gamma \in (0, 1)$ such that if $x_1, \ldots, x_N \in B$, $X = \sum_{j=1}^N e^{2\pi i \omega_j} x_j$, and $\sigma^2 = \mathscr{E} \parallel X \parallel^2$ then

$$P\{ ||X + Y|| < \delta\sigma \} \leq \gamma P\{ ||X + Y|| < K\sigma \}$$

for any B-valued random variable Y which is independent of X.

PROOF OF LEMMA 1. The result of Kahane referred to above shows that there exists $\beta > 0$ such that $\mathscr{E} \parallel X \parallel \ge \beta \{ \mathscr{E} \parallel X \parallel^2 \}^{1/2} = \beta$. For $\varepsilon > 0$ define the event $A_{\varepsilon} = \{ \parallel X \parallel < \varepsilon \}$. Clearly a lower bound on $\mathscr{E} \parallel X \parallel$ together with an upper bound on $\mathscr{E} \parallel X \parallel^2$ show that $\parallel X \parallel$ cannot be too small on too large a set; in fact one sees that

(13)
$$P(A_{\epsilon}) \leq \frac{1-\beta^2}{1-2\epsilon}.$$

(Cf. the "Paley-Zygmund inequalities" in [KH].)

Pick $\delta_0 > 0$ so that $(1 - \beta^2)/(1 - 2\delta_0) < 1$, and let $p_0 = (1 - \beta^2)/(1 - 2\delta_0)$. We will prove (12) with

$$\delta = \frac{1}{2}\delta_0, \quad K = \max\left(3\delta, \,\delta + \left(\frac{2}{1-p_0}\right)^{1/2}\right), \quad \text{and} \quad \gamma = \max\left(\frac{1}{2}, \frac{2p_0}{p_0+1}\right).$$

Case 1: $||y|| \leq \delta$. In this case

$$P\{ \| X - y \| < \delta \} \le P\{ \| X \| < 2\delta = \delta_0 \} \le p_0$$

by (13), while $\mathscr{E} \parallel X \parallel^2 = 1$ shows that

$$P\{ || X - y || < K\} \ge P\{ || X || < K - \delta\} \ge 1 - (K - \delta)^{-2}.$$

This gives (12), since

$$\frac{p_0}{1-(K-\delta)^{-2}} \leq \gamma.$$

Case 2: $||y|| > \delta$. In this case we may pick a real number θ such that $|1 - e^{i\theta}| = 2\delta/||y||$. Let $\hat{y} = e^{i\theta}y$; then $||y - \hat{y}|| = 2\delta$. For $z \in B$ and r > 0 define $B(z, r) = \{x \in B : ||z - x|| < r\}$. Now $||y - \hat{y}|| = 2\delta$ shows that $B(y, \delta)$ and $B(\hat{y}, \delta)$ are disjoint, while symmetry shows that $P\{X \in B(\hat{y}, \delta)\} = P\{X \in B(y, \delta)\}$. Since both are contained in $B(y, 3\delta)$, we see that

$$P\{ || X - y || < K\} \ge P\{ || X - y || < 3\delta \}$$
$$\ge P\{ || X - y || < \delta \} + P\{ || X - \tilde{y} || < \delta \}$$
$$= 2P\{ || X - y || < \delta \}.$$

This gives (12), since $\gamma \geq \frac{1}{2}$.

3. Corollary

Let $\tilde{\omega}_1, \tilde{\omega}_2, \ldots$ denote another sequence of Steinhaus variables, independent of $\omega_1, \omega_2, \ldots$.

COROLLARY. There exists c > 0 with the following property: If B is a Banach space and $x_{j,k} \in B$ for $1 \leq j, k \leq N$ then

(14)
$$\exp \mathscr{E} \log \left\| \sum_{j,k=1}^{N} e^{2\pi i \omega_{j}} e^{2\pi i \omega_{k}} x_{j,k} \right\|$$
$$\geq c \left\{ \sum_{j,k=1}^{N} e^{2\pi i \omega_{k}} e^{2\pi i \omega_{k}} x_{j,k} \right\|^{2} \right\}^{1/2}.$$

PROOF. Let Ω and $\tilde{\Omega}$ denote the probability spaces on which ω_j and $\tilde{\omega}_k$, respectively, are defined. Let $X = L_B^2(\tilde{\Omega})$ denote the space of square-integrable *B*-valued functions defined on $\tilde{\Omega}$. For j = 1, ..., N let

$$\sum_{k=1}^{N} e^{2\pi i \hat{\omega}_k} x_{j,k} = y_j \in X.$$

Now two applications of the theorem, once in B and once in X, show that

$$\exp \mathscr{E} \log \left\| \sum_{j,k=1}^{N} e^{2\pi i \omega_{j}} e^{2\pi i \bar{\omega}_{k}} x_{j,k} \right\|_{B}$$

$$= \exp \mathscr{E}_{\omega} \log \exp \mathscr{E}_{\bar{\omega}} \log \left\| \sum_{j,k=1}^{N} e^{2\pi i \omega_{j}} e^{2\pi i \bar{\omega}_{k}} x_{j,k} \right\|_{B}$$

$$\geq c \exp \mathscr{E}_{\omega} \log \left\{ \mathscr{E}_{\bar{\omega}} \right\| \sum_{j,k=1}^{N} e^{2\pi i \omega_{j}} e^{2\pi i \bar{\omega}_{k}} x_{j,k} \right\|_{B}^{2} \right\}^{1/2}$$

$$= c \exp \mathscr{E}_{\omega} \log \left\| \sum_{j=1}^{N} e^{2\pi i \omega_{j}} y_{j} \right\|_{X}$$

$$\geq c \left\{ \mathscr{E}_{\omega} \right\| \sum_{j=1}^{N} e^{2\pi i \omega_{j}} e^{2\pi i \bar{\omega}_{k}} x_{j,k} \right\|_{B}^{2} \right\}^{1/2}$$

$$= c \left\{ \mathscr{E} \right\| \sum_{j,k=1}^{N} e^{2\pi i \omega_{j}} e^{2\pi i \bar{\omega}_{k}} x_{j,k} \right\|_{B}^{2} \right\}^{1/2}.$$
Q.E.D.

References

[AG] A. Araujo and E. Gine, The Central Limit Theorem for Real and Banach Valued Random Variables, Wiley, New York, 1980.

[KH] J. P. Kahane, Some Random Series of Functions, D. C. Heath & Co., Lexington, Massachusetts, 1968, or second edition: Cambridge University Press, New York, 1985.

[KW] S. Kwapien, Isomorphic characterisations of inner product spaces by orthogonal series with vector valued coefficients, Studia Math. 44 (1972).

[LT] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Vol. II, Springer-Verlag, New York, 1979.

[UK] D. Ullrich, Khinchine's inequality and the zeroes of Bloch functions, Duke Math. J., to appear.