
ISRAEL JOURNAL OF MATHEMATICS, Vol. 62, No. 1, 1988 

AN EXTENSION OF THE 
KAHANE-KHINCHINE INEQUALITY 

IN A BANACH SPACE 

BY 

DAVID C. ULLRICH 
Department of Mathematics, Oklahoma State University, 

Stillwater, OK 74078-0613, USA 

ABSTRACT 
We show that the geometric mean of the norm of a linear combination of the 
Steinhaus variables with "coefficients" in a Banaeh space is equivalent to the 
variance of the norm. This extends a result of Kahane, who established the 
corresponding inequality for the L p means. 

O. Introduction 

Let to1, to2 . . . .  denote the Steinhaus variables: independent identically dis- 
tributed random variables, uniformly distributed on [0, 1 ]. A classical version 
of Khinchine's inequality states that for any p > 0 there exist Cp, Cp > 0 such 
that for any Xl . . . . .  x•EC we have 

(1) 

fIN 2t,,2 C o 8 ~ e2X~°~J~ ~ ~ 8 .~ e2Xi°J/Xj 
j i j l 

CoISlj~ l . [olt/o e2X'wjxj ~ " 

(Here and below "8"  denotes "expected value".) 
This inequality was considerably generalized by Kahane, who showed that if 

B is a Banach space and x ~ , . . . ,  x ~ E B  then 
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(2) 

C, # Y~ e2"°,xj "P> # 2 e2"°~'xj 
j - - I  j - - I  

> e 2 ~ i  . 

j i 

(See Theorem 4 in Chapter 2 of [KH] or Exercise 1 on page 176 of [AG] for the 
original proof; a different argument due to C. Borell appears in Section 1.e of 
[LT], Volume II.) (Note that the middle term in (2) is not equivalent to 
{zfl_l II xj II 2},,2 unless B is isomorphic to a Hilbert space; see [KW].) 

It was shown in [UK] that (1) extends to the case p = 0: 

(3) exp{,log 2} 1/2 

We should perhaps point out that the corresponding inequality with 
Rademacher functions in place of the Steinhaus variables is false, so that (3) 
cannot quite follow from the central limit theorem per se. On the other hand, 
(3) would be trivial if the Steinhaus variables were replaced by Gaussian 
variables, but the Gaussian version of (3) does not suffice for the applications 
given in [UK]. 

The purpose of the present paper is to prove a Banach-space version of (3) 

(Theorem 1 below). 
The proof of (2) in [UK] is by the so-called "method of characteristic 

functions", also known as the Fourier transform. Having attempted to demon- 
strate the contrary, we must agree with the authors of lAG] that such methods 
seem to be of little use in proving results such as this in the infinite- 
dimensional case. However, it turns out that Kahane's proof of (2) can be 
adapted to the present case. The main step in the proof of(2) given in [KH] is a 
lemma stating roughly that if2 > 0 is such that our sum probably has norm not 
exceeding 2, then it is extremely unlikely that the norm exceeds 22 ([KH], 
Theorem 3 (Chapter 2)). We prove a sort of"concentration inequality" in the 
other direction: There exist a > 0 and 3' < 1 such that, under suitable hypoth- 
eses, the probability that the norm of our sum is less than o.2 does not exceed y 
times the probability that the norm is less than ;t. See Lemmas 1 and 2 below. 

We wish to thank A. Pelczyfiski for suggesting the question. 

NOTE. Recall that a Banach space is said to have cotype 2 if 
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N N 2 
(4) II xj II 2 ___< e2nitOJXj 

j-1 j , 

(This is equivalent to the usual definition in terms of Rademacher functions; 
see the Appendix to [AG].) Thus our theorem has as a corollary 

(5) e x p #  log ~ e2ni%xj > C { ~ [1 Xj [[ 2}x/2, 
jffi |  j = l  

i f B  has cotype 2. Now, i fB is a Banach lattice of cotype 2, then it is relatively 
easy to establish (5) using the Krivine functional calculus and the one- 
dimensional result in [UK]. (See [LT], Volume II, p. 42.) One might think that 
a proof of (5) in a lattice of cotype 2 "must" conceal a proof of Theorem 1 
below in an arbitrary lattice. (How can A < B imply A < C unless B -_< C?) But 
we have been unable to prove Theorem 1 in a lattice from the Krivine calculus. 
(Note that a proof of Theorem 1 in an arbitrary Banach lattice would give 
Theorem 1 in an arbitrary Banach space, since any Banach space is isometric 
to a subspace of some C(K).) 

NOTE. Our theorem immediately implies an apparently stronger statement 
concerning two (or finitely many, by induction) mutually independent se- 
quences of Steinhaus variables; see the corollary in Section 3. This is one 
reason we wished to extend the one-dimensional inequality in [UK] to a 
vector-valued context: If one takes B - - C  in the corollary one obtains an 
extension of the inequality in [UK] the statement of which mentions nothing 
but scalars, but the proof of which appears to require our vector-valued 
inequality. 

1. Theorem 

We intend to state and prove our theorem assuming the validity of the 

lemmas to be presented in the next section. 

THEOREM. There exists c > 0 such that i f  x~, . . . .  x s  are elements o f  the 

Banach space B then 

PROOF. Let x~ , . . . ,  XN ~ B ,  and let/z be the distribution (or the "law") of 

Z~_, e2"~xj, so that 

N { 2}1/2 
(6) exp 8 log • e2~O~xj >-_ c 8 ~. e2mt°Jxj 

j - i  j - l  
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lt(A ) = P {j~l e2~i~°Jx~ EA } . 

Let Bx = {x ~ B : II x II < A }. As in [UK], we need only show that 

(7) f~/z(Ba)A - ~dA < c 

under the assumption (which we now assume) that 8 II zF=l e2~i°'jxj II 5 =  1. 

Suppose II Xl II ->-- II xj II for allj .  The piece of the integral in (7) corresponding 
to A < ½ II x, II can be handled by the same simple argument as in [UK]: I f  
A < ½ II x~ II then for any y ~ B whatsoever the triangle inequality shows that 

P{ II eZ'~'x,-Y II <A} ~ cA/II x, II, 

so that independence gives 

P Y~ eZ~i~Jxj 
j = l  

Thus 

(8) 

Next we will show that 

1 < A~ ~ cA/II x, II (x < ½ II x, II ). 

f0 11 x, II/z _ ~dA /z(B~)A < C. 

Let K, ~, and ? be as in Lemmas 1 and 2. The above inequality shows that 

f0 2rllx'll lt(Ba)A-ldA < c. 

(9) l z ( B J  < 71z(B~) (2K II x, II < 2 =< 1), 

where a = ~/2K. Fix 2 ~ [2K II x, II, 1], and now pick an integer M which is 
maximal subject to the condition 

(10) { ,  j.~, " 112)'/2 e2"°'Jxj ~ < 2/K. 

(We may certainly suppose K > 1, so that 2/K < 1, which implies that (10) 
fails i f M i s  large enough, since ¢ II z r - ,  eS~'~'xj II 5 =  1.) 

Let X =  Z~-I eS~i%xj and Y =  Z~_u+~ e2ni%Xj; let tr 2 =  & II x II 5, Then (10) 
states precisely that Ko < 2. On the other hand, the triangle inequality and the 

max ima l i t yo fMshowtha t  tr + II x~,+, II > 2 / K ; s i n c e  II x, II >-- II x~,+, II and 
2 > 2K II x, II this shows that that a2 = ~2/2K < da. Now l .emma 2 gives (9): 
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P( IIX+ YU <~}- -<?{  IIX+ YII <~o} 

---< 3,P{ IIX+ YII <Ko} 

~3'P{ IIX+ Eli <A}. 

(In other words: Although the distribution of our sum is presumably not 
infinitely divisible, it is pretty darn divisible - -  enough so to derive (9) from 
Lemma 2.) 

Now we can conclude the proof: 
Let I, = [a "+~, a ' ] .  Pick n0so 2K [[ xt [[ EI,~. Repeated use of(9) shows that 

/z(B~) < 3" for 2 E l , ,  n = 0, I , . . . ,  no. Thus 

: l "° I 
( l l )  /*(B~)2-~d~ _- < ~ 3,'log-_-<c. 

n - 0  0t 

Since 2K [[ x~ U > ate+ ~), (8) and (11) give (7). QED, assuming Lemma 2. 

2. Lemmas 

In this section we shall state and prove Lemma 1, leaving it to the reader to 

deduce Lemma 2. 

LEMMA 1. There exist constants t~ > 0, K < oo, and 7 E (0, 1) such that i f  
x~ . . . . .  xs  ~ B, X = Zf_ ~ e2"t%xj, and 8 [[ X [[ 2 = 1, then 

(12) P( II x -  y II < 6} ~ 3,e{ II x - y II < K} 

for any y ~ B. 

L~MMA 2. There exist constants ~ > 0 ,  K <  ~ ,  and 3,E(0, 1) such that i f  

x,, . . . .  xNEB, X = z : . ,  e2"~xj, and o 2-- ~r II X II 2 then 

P{ IIX+ YIi <6o}___< 3,e{ I IX+ YII < X o }  

for any B-valued random variable Y which is independent o f  X. 

PROOF OF LEPTA 1. The result of  Kahane referred to above shows that 
there exists p > 0 such that 8 H X U > fl { 8 JJ X Jl 2} u2 __/~. For e > 0 define the 
event A, ffi { I[ X II < 8 }. Clearly a lower bound on 8 II X II together with an 
upper bound on 8 II x II 2 show that II X II cannot be too small on too large a 

set; in fact one sees that 
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1 _ ~ 2  
(13) P(a , )  < ~ .  

= 1 - 2 e  

(Cf. the "Paley-Zygmund inequalities" in [KH].) 
Pick 6o > 0 so that (1 -//2)/(1 - 260) < 1, and let Po = (1 -//2)/(1 - 260). We 

will prove (12) with 

$--~o, K=max 36,6 \l-po/ /' and y--max 'po~l]" 

Case I: II y II --< 6. In this case 

P{ llX-y II <6}_-<P( llXll <26 =6o) ~ po 

by (I 3), while g II x II 2 ___ I shows that 

<K}>-_P{ IIXII <a-6) > I -(K-6) -2 e{ II x -  y II 

This gives (12), since 

Po 

I -(K-S) -2--<-y" 

Case 2" II Y II > $. In this case we may pick a real number 0 such that 

11 - e i° I -- 26/II y II, Let ~ -- e'°y; then II y -: II = 26. For z EB and r > 0 
define B(z, r) = (x EB" II z - x II < r}. Now II y -: II = 26 shows that 
B(y, 6) and B(p, $) are disjoint, while symmetry shows that 

P{XEB(.p, 6)} = P{XEB(y, 6)}. Since both are contained in B(y, 35), we 
see that 

P{ I IX-y  II <K} >P{ I I X - y  II <36} 

>--e{ I IX-y  II < 6 ) + e {  I IX-?  II <6} 

=2P( I l X - y  Ii <6}. 

This gives (12), since y ->_ ½. 

3. Corollary 

Let cb~, o)2 . . . .  denote another sequence of Steinhaus variables, independent 
of  ~ol, o~2, . . . .  

COROLLARY. There exists c > 0 with the following property: I f  B is a 

Banach space and x~:, E B  for 1 < j ,  k < N then 
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exp g log ~ _2~i,o_2~ .. ~. J~. kX, j , k 
j,k - I 

(14) 
> c  

j, 1 ~" '~" ~),k 11 

PROOF. Let ~ and ~ denote the probability spaces on which ~j and (~)k, 
respectively, are defined. Let X = L~ (~) denote the space of square-integrable 
B-valued functions defined on ~. For j  = 1 , . . . ,  N let 

N 
~,, ~2ni(o~ y "~j,k yj ~ X.  

k~l  

Now two applications of the theorem, once in B and once in X, show that 

exp 8 log j,k~ ~ e'~2nR°~EniO~,e" ~-~j,k B 

N --21tito'--2ni(OkY [I = exp ~,o log exp 6r~ log ~ ~" 'e  ~j,k [[B 
j, 1 

> c exp go, log f8~, j ,k~l  " . . .  ,, 2)  1/2 = e2m%e2mt°*Xj'k S~ 

= c exp go, log ~ e2~i%YJ x 
j ~ l  

{ ~ e2"i°" 2x}"2 _>-c g,o 
j= l  

= C t~ ~ ~2xit°~21ti(°kr, e .Aj, k 
j,k = 1 

Q.E.D. 
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